Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Gut Microbes ; 15(1): 2223340, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-20242837

RESUMO

The antibiotic resistome is the collection of all antibiotic resistance genes (ARGs) present in an individual. Whether an individual's susceptibility to infection and the eventual severity of coronavirus disease 2019 (COVID-19) is influenced by their respiratory tract antibiotic resistome is unknown. Additionally, whether a relationship exists between the respiratory tract and gut ARGs composition has not been fully explored. We recruited 66 patients with COVID-19 at three disease stages (admission, progression, and recovery) and conducted a metagenome sequencing analysis of 143 sputum and 97 fecal samples obtained from them. Respiratory tract, gut metagenomes, and peripheral blood mononuclear cell (PBMC) transcriptomes are analyzed to compare the gut and respiratory tract ARGs of intensive care unit (ICU) and non-ICU (nICU) patients and determine relationships between ARGs and immune response. Among the respiratory tract ARGs, we found that Aminoglycoside, Multidrug, and Vancomycin are increased in ICU patients compared with nICU patients. In the gut, we found that Multidrug, Vancomycin, and Fosmidomycin were increased in ICU patients. We discovered that the relative abundances of Multidrug were significantly correlated with clinical indices, and there was a significantly positive correlation between ARGs and microbiota in the respiratory tract and gut. We found that immune-related pathways in PBMC were enhanced, and they were correlated with Multidrug, Vancomycin, and Tetracycline ARGs. Based on the ARG types, we built a respiratory tract-gut ARG combined random-forest classifier to distinguish ICU COVID-19 patients from nICU patients with an AUC of 0.969. Cumulatively, our findings provide some of the first insights into the dynamic alterations of respiratory tract and gut antibiotic resistome in the progression of COVID-19 and disease severity. They also provide a better understanding of how this disease affects different cohorts of patients. As such, these findings should contribute to better diagnosis and treatment scenarios.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Humanos , Antibacterianos , Vancomicina , Leucócitos Mononucleares , Sistema Respiratório , Gravidade do Paciente
3.
Adv Sci (Weinh) ; 9(27): e2200956, 2022 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1913747

RESUMO

The role of respiratory tract microbes and the relationship between respiratory tract and gut microbiomes in coronavirus disease 2019 (COVID-19) remain uncertain. Here, the metagenomes of sputum and fecal samples from 66 patients with COVID-19 at three stages of disease progression are sequenced. Respiratory tract, gut microbiome, and peripheral blood mononuclear cell (PBMC) samples are analyzed to compare the gut and respiratory tract microbiota of intensive care unit (ICU) and non-ICU (nICU) patients and determine relationships between respiratory tract microbiome and immune response. In the respiratory tract, significantly fewer Streptococcus, Actinomyces, Atopobium, and Bacteroides are found in ICU than in nICU patients, while Enterococcus and Candida increase. In the gut, significantly fewer Bacteroides are found in ICU patients, while Enterococcus increases. Significant positive correlations exist between relative microbiota abundances in the respiratory tract and gut. Defensin-related pathways in PBMCs are enhanced, and respiratory tract Streptococcus is reduced in patients with COVID-19. A respiratory tract-gut microbiota model identifies respiratory tract Streptococcus and Atopobium as the most prominent biomarkers distinguishing between ICU and nICU patients. The findings provide insight into the respiratory tract and gut microbial dynamics during COVID-19 progression, considering disease severity, potentially contributing to diagnosis, and treatment strategies.


Assuntos
COVID-19 , Microbiota , Biomarcadores , Defensinas , Enterococcus , Trato Gastrointestinal , Humanos , Leucócitos Mononucleares , Sistema Respiratório
4.
Ann Intern Med ; 174(2): 284, 2021 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1518753
5.
Front Cell Infect Microbiol ; 11: 685640, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1282378

RESUMO

Background: Viral nucleic acid detection is considered the gold standard for the diagnosis of coronavirus disease 2019 (COVID-19), which is caused by SARS-CoV-2 infection. However, unsuitable sample types and laboratory detection kits/methods lead to misdiagnosis, which delays the prevention and control of the pandemic. Methods: We compared four nucleic acid detection methods [two kinds of reverse transcription polymerase chain reactions (RT-PCR A: ORF1ab and N testing; RT-PCRB: only ORF1ab testing), reverse transcription recombinase aided amplification (RT-RAA) and droplet digital RT-PCR (dd-RT-PCR)] using 404 samples of 72 hospitalized COVID-19 patients, including oropharyngeal swab (OPS), nasopharyngeal swabs (NPS) and saliva after deep cough, to evaluate the best sample type and method for SARS-CoV-2 detection. Results: Among the four methods, dd-RT-PCR exhibited the highest positivity rate (93.0%), followed by RT-PCR B (91.2%) and RT-RAA (91.2%), while the positivity rate of RT-PCR A was only 71.9%. The viral load in OPS [24.90 copies/test (IQR 15.58-129.85)] was significantly lower than that in saliva [292.30 copies/test (IQR 20.20-8628.55)] and NPS [274.40 copies/test (IQR 33.10-2836.45)]. In addition, if OPS samples were tested alone by RT-PCR A, only 21.4% of the COVID-19 patients would be considered positive. The accuracy of all methods reached nearly 100% when saliva and NPS samples from the same patient were tested simultaneously. Conclusions: SARS-CoV-2 nucleic acid detection methods should be fully evaluated before use. High-positivity rate methods such as RT-RAA and dd-RT-PCR should be considered when possible. Furthermore, saliva after deep cough and NPS can greatly improve the accuracy of the diagnosis, and testing OPS alone is not recommended.


Assuntos
Teste para COVID-19/métodos , COVID-19 , COVID-19/diagnóstico , Teste de Ácido Nucleico para COVID-19 , Humanos , Nasofaringe , Pandemias , RNA Viral/genética , SARS-CoV-2 , Saliva , Manejo de Espécimes
6.
Int J Biol Sci ; 16(15): 2803-2811, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-825937

RESUMO

The existence of a substantial but unclear number of asymptomatic SARS-COV-2 patients worldwide has raised concerns among global public health authorities. In this review, according to the published literature, we provided the evidence that asymptomatic infections can result in person-to-person transmission. Four studies suggested that the virus can be transmitted by asymptomatic patients for at least two consecutive generations, indicating its strong infectivity. Asymptomatic infection tends to be, but is not only, identified among young people (<20 years old). The majority of asymptomatic patients appear to have a milder clinical course during hospitalization, but the severity of the symptoms of the secondary patients infected by SARS-COV-2 from asymptomatic patients varies with their physical constitution. The proportion of asymptomatic individuals among all confirmed cases widely differed (from 1.95% to 87.9%) according to the study setting and the populations studied. The increasing large-scale tests are expected to give more information about the true number of asymptomatic infections in the population. In China and other countries, various guidelines for management of asymptomatic cases have been issued. Importantly, early detection, early reporting, early isolation and early treatment of asymptomatic patients require the joint efforts of policy makers, clinicians, technicians, epidemiologists, virologists and patients.


Assuntos
Infecções Assintomáticas/epidemiologia , Técnicas de Laboratório Clínico , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Adolescente , Betacoronavirus , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/diagnóstico , Estado Terminal , Hospitalização , Humanos , Controle de Infecções , Pandemias , SARS-CoV-2 , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA